MACHINE LEARNING VS DEEP LEARNING : quelles différences ?

machine_learning_vs_deep_learning

L’intelligence artificielle (IA) redéfinit les capacités des machines, permettant des avancées technologiques qui transforment nos interactions avec le monde numérique. Parmi ces technologies, le Machine Learning et le Deep Learning jouent un rôle crucial en améliorant le traitement des données et en ouvrant la voie à des innovations dans divers secteurs.

L’intelligence artificielle (IA) est une branche de la science qui se consacre à la création de machines capables d’accomplir des tâches qui nécessiteraient normalement une forme d’intelligence humaine. Marvin Minsky, pionnier dans ce domaine, définit l’IA comme « la science qui consiste à faire faire aux machines des choses qui nécessiteraient de l’intelligence si elles étaient réalisées par des hommes ».

Fondée sur des mathématiques et des algorithmes, l’IA simule des fonctions cognitives humaines telles que l’apprentissage et la décision. Ce domaine scientifique se scinde en deux principales sous-disciplines : le Machine Learning et le Deep Learning.

I) le deep learning et machine learning : des sous-catégories de l’ia

Les différents domaines et spécialisations de l’Intelligence Artificielle
Les différents domaines et spécialisations de l’Intelligence Artificielle

Bien que le deep learning et le machine learning soient souvent confondus, il est important de comprendre les distinctions entre les deux. En effet, le deep learning est en réalité une sous-catégorie du machine learning, lequel fait lui-même partie intégrante de l’intelligence artificielle.

Découvrez notre fiche & insight sur l’IA générative.

II) le machine learning : apprendre à partir des données

machine_learning

a) Les fondements du Machine Learning

L’apprentissage automatique classique, également appelé machine learning, est une technologie permettant aux machines d’apprendre de manière autonome à partir de données et d’améliorer leurs performances sans être explicitement programmées pour chaque tâche. Cette branche de l’IA s’appuie sur des algorithmes qui analysent des ensembles de données pour en extraire des modèles et faire des prédictions ou prendre des décisions basées sur de nouvelles données. Le potentiel de cette technologie réside dans sa capacité à traiter et analyser des volumes de données bien supérieurs à ceux qu’un humain pourrait gérer, ouvrant ainsi la voie à des applications telles que la reconnaissance vocale ou la détection de fraude.

b) Interaction humaine et apprentissage supervisé

Dans l’apprentissage automatique traditionnel, l’intervention humaine est essentielle. Considérons la classification d’images de restauration rapide, par exemple. Les experts commencent par identifier des caractéristiques clés, comme le type de pain sur les images de hamburgers, pizzas, et tacos. Ces caractéristiques sont ensuite utilisées pour étiqueter les images dans une base de données, simplifiant le processus d’apprentissage supervisé. En conséquence, le modèle apprend à différencier ces types de repas rapidement grâce aux indications fournies, mettant en évidence l’impact crucial de l’intervention humaine pour affiner les données d’entrée et améliorer la précision des résultats.

Téléchargez notre livre blanc sur l’IA générative

III) le deep learning : s’inspirer du cerveau humain

Deep Learning

a) Introduction au Deep learning

Le Deep Learning s’inspire directement du fonctionnement du cerveau humain, utilisant des réseaux de neurones artificiels pour traiter et interpréter des quantités massives d’informations. Des modèles récents comme Deepseek R1 illustrent la puissance croissante des approches open source dans ce domaine. Le deep learning permet aux systèmes d’apprendre avec une précision élevée et de traiter les données à travers de multiples couches, ce qui améliore significativement leur capacité à reconnaître des patterns complexes. Cette approche est particulièrement efficace pour des applications comme la traduction automatique ou la reconnaissance d’images, où elle peut précisément identifier et classer les éléments d’importants ensembles de données.

b) Complexité et automatisation dans le Deep Learning

Le deep learning, une évolution du machine learning, traite des données non structurées comme le texte ou les images. Il identifie automatiquement des caractéristiques sans besoin d’étiquetage humain. Ce processus utilise des réseaux de neurones multicouches et fonctionne en modes supervisé ou non supervisé. La principale distinction avec le machine learning classique réside dans l’automatisation accrue et le nombre de couches neuronales. Le terme « profond » désigne des réseaux de plus de trois couches, illustrant leur complexité accrue.

Qu’entend-on par Neural Networks ou réseaux de neurones ?
Réseaux de neurones

Un réseau de neurones artificiels consiste en des couches de nœuds avec une entrée, des couches cachées, et une sortie. Chaque nœud est connecté à d’autres avec des poids et des biais1. Les données traversent le réseau pour la reconnaissance de modèles. Il existe différents types de réseaux de neurones :

  • le perceptron ;
  • les réseaux de neurones Feedforward (MLP) ;
  • les réseaux de neurones convolutifs (CNN) ;
  • les réseaux de neurones récurrents (RNN).

En conclusion

Vous souhaitez en savoir plus sur le sujet ou nous faire part de vos projets digitaux ambitieux ? Contactez nos experts dès à présent.

  1. ¹Les poids et les biais sont ajustés continuellement pour améliorer la précision du réseau de neurones, les poids étant appliqués aux entrées pour calculer les sorties, et les biais ajoutés après cette étape, formant ainsi des valeurs d’auto-apprentissage du réseau. ↩︎

Les dernières

ACTUALITÉS

  • UX Design : comment concevoir une interface centrée utilisateur ?
    Un bon design ne se voit pas, il se ressent. L’UX design, c’est l’art de concevoir des interfaces qui anticipent les besoins des utilisateurs, facilitent leurs actions et rendent leur parcours aussi fluide qu’intuitif. Derrière chaque interface bien pensée, il y a une méthode, des choix, et surtout, une écoute attentive de l’utilisateur.
  • Tests utilisateurs : Comment améliorer votre UX en continu ?
    Une expérience utilisateur réussie ne se conçoit pas en un seul geste. Elle se façonne au fil du temps, en écoutant, en observant et en ajustant continuellement. Grâce aux tests utilisateurs, aux feedbacks collectés et à une boucle d’amélioration rigoureuse, il devient possible de transformer chaque interaction en une opportunité d’optimisation.
  • Ergonomie web : les fondations d’une interface efficace
    Créer un site agréable à utiliser ne relève pas seulement du bon goût : c’est une discipline à part entière. L’ergonomie web repose sur des principes éprouvés pour concevoir des interfaces utiles, intuitives et centrées sur l’utilisateur. Véritable colonne vertébrale de l’expérience en ligne, elle influence la navigation, la perception de la marque…
  • Total Experience : harmoniser toutes les expériences d’entreprise
    La total experience est une approche qui vise à unifier l’ensemble des expériences liées à l’entreprise : client, collaborateur, utilisateur, interface. Plutôt que de traiter ces dimensions séparément, la TX les connecte pour créer plus de cohérence, améliorer la satisfaction et renforcer la performance globale. Elle repose sur une conviction simple : toutes les expériences sont liées, et mieux elles fonctionnent ensemble, plus l’organisation est efficace.
  • Accessibilité web : une métrique à prioriser 
    Que se passe-t-il quand un site fonctionne parfaitement… sauf pour ceux qui en ont le plus besoin ? L’accessibilité web ne concerne pas un public à part, mais l’ensemble des usages réels : écrans variés, fatigue visuelle, navigation sans souris, contexte mobile. Cet article fait le point sur ce qui rend un site accessible — ou non — et comment agir dès la conception.