La Data Science & IA est le point de rencontre entre la data et l’IA. C’est l’un des domaines qui connaît une croissance plus rapide dans l’industrie technologique. À travers l’analyse approfondie des données, la science des données permet de découvrir des insights cachés, de prédire des tendances futures et de prendre des décisions éclairées dans une multitude de domaines, allant de la finance à la santé, en passant par le marketing et la recherche scientifique.
Nous vous avons identifié 3 grandes tendances de la data science & IA, tout en s’appuyant sur le Rapport de Gartner 2024 et Forbes. Vous êtes prêt? C’est parti !
1. La migration vers le cloud : vers l’apogée ?
Le cloud permet aux entreprises de tirer parti de ressources informatiques puissantes sans investissements initiaux importants. Ainsi, il intéresse de plus en plus les entreprises. En effet, selon Forbes, « plus de 60% des entreprises migrent vers des solutions cloud pour la transformation de l’entreprise. »
Plus loin, Gartner renchérit « d’ici l’horizon 2025, 75% des entreprises mettront en œuvre des modèles commerciaux basés sur le cloud. »
Les solutions cloud native deviennent-elles incontournables?
En 2024, les solutions cloud native continuent de gagner en importance et deviennent de plus en plus incontournables dans le monde technologique. Leur adoption est largement encouragée en raison des nombreux avantages qu’elles offrent, notamment en termes de scalabilité, de flexibilité et d’efficacité opérationnelle.
Les entreprises cherchent de plus en plus à moderniser leurs infrastructures informatiques et à migrer leurs charges de travail vers le cloud pour rester compétitives sur le marché. Les solutions cloud native, conçues spécifiquement pour fonctionner dans des environnements cloud, répondent à ce besoin croissant en offrant une architecture agile et orientée services. Gartner prévoit :
« 95% des nouvelles charges de travail d’applications numériques seront déployées sur des plateformes cloud natives, contre 30% en 2021. »
2. L’Ia : cadre juridique
Découvrez la fiche Insight sur l’IA Générative
L’IA est une tendance en 2024. On en parle dans tous les domaines. Dans le domaine de la data science, elle est utilisée pour analyser des ensembles de données complexes, identifier des tendances et des modèles cachés, et générer des insights exploitables. Des techniques telles que l’apprentissage supervisé et non supervisé, le clustering et la prédiction sont largement utilisées pour extraire de la valeur des données. Retrouvez notre article sur les tendances de l’IA en 2024.
2.1. La loi sur l’IA : quelles sont les priorités du parlement ?
Le parlement veut que les systèmes d’intelligence artificielle utilisés dans l’UE soient sécurisés, transparents, traçables, non discriminatoires et respectueux de l’environnement. En effet, il voudrait que l’intelligence artificielle ne soit pas livrée à elle-même avec l’automatisation. Plutôt, que les humains la supervisent afin de prévenir d’éventuelles conséquences néfastes. A cet effet, la loi sur l’IA définit des règles à l’encontre des fournisseurs et utilisateurs de l’IA.
2.2. L’IA et la pollution de la planète
Comme nous l’avons mentionné dans l’un de nos articles, la technologie durable fait partie des tendances technologiques en 2024. Or, selon certaines études, l’IA est loin d’être innocente en termes de pollution de la planète. L’entrainement des neurones (Deep learning) consomme autant d’énergie que 5 voitures, selon une étude repérée par MIT Technology Review. En effet, pour apprendre à une IA à accomplir une tâche, il faudrait lui fournir de grandes quantités de données. C’est ainsi qu’elle pourrait être précise dans les résultats.
Ceci revient-il à dire que parler d’intelligence artificielle responsable serait utopique?
2.3. Vers une IA responsable ?
C’est le fait d’injecter de grandes masses de données à l’IA qui pollue la planète. Comment alors faire en sorte que l’IA pollue moins l’environnement? On fait recours à un concept qui n’est pas nouveau : synthetic data. En effet, les données synthétiques sont la solution à ce problème. Les données sont générées artificiellement au lieu d’être collectées.
Selon les prévisions de Gartner, en 2024, environ 60 % des systèmes d’IA seront basés sur cette approche, utilisant des données générées par des algorithmes plutôt que des données réelles.
Cette transition vers l’IA synthétique représente un changement significatif dans la façon dont les systèmes d’IA sont construits et exploités. Plutôt que de simplement analyser et extrapoler à partir de données existantes, l’IA peut créer de nouvelles informations et scénarios basés sur des modèles appris. En d’autres termes, ils sont capables de simuler des situations qui n’existent pas nécessairement dans le monde réel.
3. La cyber-résilience : réglementation et enjeux
Alors que la technologie progresse à pas de géant, les menaces qui pèsent sur nos données et nos systèmes deviennent de plus en plus sophistiquées et omniprésentes.
3.1. Réglementation : la Cyber-résilience Act
Les parlementaires approuvent la loi visant à renforcer la sécurité des produits numériques. La nouvelle réglementation européenne vise à protéger les individus, entreprises et institutions contre la cybersécurité en croissance. Cette loi impose des contraintes de cybersécurité aux fournisseurs de produits numériques, visant à remédier aux vulnérabilités matérielles et logicielles. Elle assurera :
- L’instauration de règles cohérentes lors de la commercialisation de produits ou de logiciels incluant une composante numérique
- L’établissement d’un cadre d’exigences en matière de cybersécurité régissant la conception, le développement et la maintenance de ces produits
- La nécessité d’assurer une vigilance tout au long du cycle de vie de ces produits.
3.2. Cyber-résilience et gouvernance des données : quels sont les enjeux?
La cyber-résilience et la data gouvernance sont étroitement liées, se renforçant mutuellement pour garantir la sécurité et la protection des informations. Une solide gouvernance des données fournit le cadre nécessaire pour identifier, classer et protéger les actifs informationnels critiques, contribuant ainsi à renforcer la résilience globale de l’organisation contre les cybermenaces.
Pour renforcer la cyber-résilience et la gouvernance des données, les entreprises devront adopter des meilleures pratiques éprouvées. Cela peut inclure l’utilisation de technologies de pointe telles que l’intelligence artificielle et l’apprentissage automatique pour détecter les menaces, ainsi que l’élaboration de plans de réponse aux incidents détaillés pour minimiser les dommages en cas d’attaque.