L’observabilité des données, 3 cas d’usage

Data observabilty_3 use cases

L’observabilité des données émerge comme une pratique essentielle, offrant des avantages significatifs dans divers secteurs. Examinons de près 3 cas d’usage de l’observabilité des données qui démontrent son importance croissante.

I. Définition et avantages de la data observability

1. Définition de l’observabilité des données

L’observabilité des données se réfère à la capacité de surveiller, de mesurer et de comprendre le comportement des systèmes et des processus liés aux données.

Il s’agit de la collecte de métriques significatives, la détection des anomalies, la traçabilité des flux de données et la gestion proactive des problèmes. En d’autres termes, l’observabilité permet aux experts en data d’avoir une vision claire et approfondie de l’état de leurs systèmes.

2. Avantages de l’observabilité des données

La data observability n’est pas seulement une nécessité opérationnelle, mais une source de multiples avantages. Les décisions basées sur des données fiables, la résolution proactive des problèmes et l’optimisation des coûts ne sont que quelques-uns des avantages qui découlent de cette pratique.

Examinons cela de plus près. Nous vous proposons ces 3 cas d’usage de l’observabilité des données :

Téléchargez le livre blanc sur la data observability

Fraicheur des données : un des piliers clés de la data observability

La fraîcheur des données permet à votre entreprise de tirer pleinement parti de ces dernières. Les données obsolètes peuvent rapidement conduire à des décisions erronées, affectant la rentabilité et la compétitivité. C’est dans ce contexte que l’observabilité des données devient indispensable.

Grâce à la surveillance des flux de données, vous pouvez garantir des informations fiables. Voici un use case qui peut illustrer cela.

Cas d’usage 1 : Checkout.com et la surveillance des données

Prenons l’exemple de la fintech Checkout.com, qui surveille plus de 4 600 ensembles de données. La fraîcheur de ces données est garantie grâce à des alertes automatisées de fraîcheur, assurant ainsi que l’organisation opère avec des informations à jour. Cette vigilance constante permet d’éviter les pièges des données périmées et renforce la confiance dans les analyses et les prises de décision.

Prévenir et résoudre les changements de schéma inattendus

Ensuite, lorsque des changements de schéma inattendus surviennent, la structure des données émises peut être altérée, entraînant des perturbations dans le pipeline de données en aval. Ce scénario est particulièrement délicat, car les ingénieurs de données ont rarement un contrôle direct sur les services émetteurs de données.

Cas d’usage 2 : Mercari réagit vite face à une modification de schéma critique

La plateforme en ligne Mercari a réussi à repérer et à rectifier promptement une brusque modification de schéma.

Xi Zhou, ingénieur en fiabilité des données chez Mercari, partage son témoignage : « Le moniteur de changement de schéma nous a aidés dans une situation où une requête Google transformait automatiquement un type de données en nombre entier, ce qui aurait posé des problèmes. Nous avons reçu l’alerte et nous en sommes occupés avant que le rapport en aval n’échoue. »

prévenir les frais liés à la surconsommation

Enfin, le dernier cas d’usage démontre comment l’observabilité des données permet également une détection précoce des anomalies. Qu’il s’agisse de pics soudains d’utilisation ou de comportements anormaux, repérer ces signes avant-coureurs est essentiel pour intervenir rapidement.

Selon Gartner, la mauvaise qualité des données peut coûter en moyenne 11,8 millions d’euros aux organisations. En identifiant et en corrigeant les problèmes potentiels avant qu’ils ne deviennent majeurs, une entreprise peut significativement réduire les coûts associés à la surconsommation.

Cas d’usage 3 : Hotjar , un exemple concret de la prévention des coûts

Hotjar est une entreprise leader dans l’analyse du comportement des utilisateurs. Son équipe de données a réussi à prévenir des dépenses significatives en utilisant sa plateforme d’observabilité des données. Cette dernière a émis une alerte lorsqu’elle a constaté qu’elle approchait les 80 % de la capacité MTU (unité de transfert maximale) pour le segment.

En d’autres termes, la plateforme a averti que la quantité de données transmises sur ce segment spécifique du réseau atteignait presque le seuil maximal autorisé. Elle a signalé ainsi un risque potentiel de surcharge. Cette vigilance proactive a permis à l’équipe de prendre des mesures avant que la situation ne conduise à des coûts excessifs liés à une utilisation critique des ressources.

Ces 3 cas d’usage démontrent comment l’observabilité des données peut être appliquée pour résoudre des problèmes concrets et améliorer les performances, la sécurité et l’expérience utilisateur dans divers domaines.

II. Intégration de l’observabilité des données dans le cycle de développement

L’observabilité des données ne doit pas être un ajout après coup, mais plutôt intégrée dès la conception des systèmes. Les équipes de développement doivent prendre en compte les aspects liés à l’observabilité lors de la conception des architectures de données et des pipelines, facilitant ainsi la surveillance continue des données tout au long de leur cycle de vie.

Téléchargez le livre blanc sur la data observability

Les dernières

ACTUALITÉS

  • Data mesh : la révolution de la gestion des données
    Avec l’explosion des volumes de données et la diversité des sources, les approches traditionnelles montrent leurs limites. C’est ici qu’intervient le Data Mesh, une approche révolutionnaire pour gérer les données de manière décentralisée et efficace.
  • Sécurité des données : protégez vos données des cyberattaques
    La sécurité des infrastructures de données est un sujet brûlant dans le domaine de la technologie de l’information. Avec l’augmentation des cyberattaques et des violations de données, les entreprises doivent prendre des mesures proactives pour protéger leurs informations sensibles.
  • Comment l’IA améliore votre gouvernance de données ?
    L’intégration de l’intelligence artificielle influence la façon dont les entreprises gèrent leurs données. L’une des zones où l’impact est le plus évident est la gouvernance des données
  • Data science : tendances et évolutions en 2024
    La Data Science connaît une évolution majeure en 2024, marquée par des avancées significatives tant sur le plan technologique que réglementaire.
  • Data Analyst et data scientist : comparaisons et Similitudes
    Qui fait quoi entre le Data Analyst et le Data Scientist? Vous vous êtes certainement déjà posé cette question. En effet, ces deux postes peuvent porter à confusion. Nous explorerons en détail les différences et les similitudes entre ces deux rôles clés.

se faire rappeler

Un conseiller vous rappelle gratuitement pour répondre à vos questions du Lundi
au Vendredi de 9h à 13h et de 14h à 18h.
Pour vous faire rappeler, merci de remplir ce formulaire.